

ClusterVO: Clustering Moving Instances and Estimating Visual Odometry for Self and Surroundings

Jiahui Huang¹, Sheng Yang², Tai-Jiang Mu¹, Shi-Min Hu¹

¹BNRist, Department of Computer Science and Technology, Tsinghua University, Beijing, China

²Alibaba Inc., China

Introduction

2

ClusterVO is a stereo Visual Odometry which simultaneously clusters and estimates the motion of both ego and surrounding rigid clusters/objects.

Unlike previous solutions relying on batch input or imposing priors on scene structure or dynamic object models, our method is online, general and applicable in various scenarios including indoor scene understanding and autonomous driving.

System Pipeline

ClusterVO: Clustering Moving Instances and Estimating Visual Odometry for Self and Surroundings

Multi-level Probabilistic Association

- For each new frame, we need to robustly associate detected features and semantic bounding boxes to map landmarks and clusters.
- Association probabilities for the two levels are calculated based on stereo triangulation uncertainty.

$$egin{aligned} \Sigma^i_t \coloneqq \mathbf{R}^{\mathbf{c}}_{t'} \,_{oldsymbol{Z}} \Sigma^i_{t'} \mathbf{R}^{\mathbf{c}}_{t'}^{ op}, & t' \coloneqq rgmin_{t' < t} | \,_{oldsymbol{Z}} \Sigma^i_{t'} | \ oldsymbol{\zeta}^i_t &= \pi(oldsymbol{p}^i_t + oldsymbol{v}^{\mathbf{q}}_t) & \Gamma^i_t = \mathbf{J}_{\pi} \Sigma^i_t \mathbf{J}^{ op}_{\pi} \end{aligned}$$

Heterogeneous CRF

 The cluster assignment qⁱ of each landmark i observed in the current frame is assigned by a Conditional Random Field model combining semantic (2D), spatial (3D) and motion information, which we call 'Heterogeneous CRF'.

$$E(\{\mathbf{q}^i\}_i) \coloneqq \sum_i \psi_u(\mathbf{q}^i) + \alpha \sum_{i < j} \psi_p(\mathbf{q}^i, \mathbf{q}^j)$$
$$\psi_u(\mathbf{q}^i) \propto p_{2\mathrm{D}}(\mathbf{q}^i) \cdot p_{3\mathrm{D}}(\mathbf{q}^i) \cdot p_{\mathrm{mot}}(\mathbf{q}^i)$$
$$\psi_p(\mathbf{q}^i, \mathbf{q}^j) \coloneqq [\mathbf{q}^i \neq \mathbf{q}^j] \cdot \exp(-\|\mathbf{p}_t^i - \mathbf{p}_t^j\|^2)$$

Sliding-Window State Optimization

- CVPR SEATTLE WASHINGTO JUNE 16-18 202
- We employ a novel double-track frame management design to maintain keyframes in dynamic scenes.
 - Temporal track frames allow for enough observations to track fast-moving clusters.
 - Spatial track frames help create enough parallax for accurate triangulation.

• The energy function for state optimization is defined separately for static and dynamic parts:

$$\begin{aligned} \mathbf{E}_{s} &\coloneqq \sum_{i \in \mathcal{I}_{0}, t \in \mathcal{T}_{a}} \rho(\|\boldsymbol{z}_{t}^{i} - \pi((\mathbf{P}_{t}^{c})^{-1}\boldsymbol{p}_{t}^{i})\|_{\boldsymbol{z}}^{2}) \\ \text{BA Term + Marginalization} \end{aligned} \\ \begin{aligned} \mathbf{E}_{s} &\coloneqq \sum_{i \in \mathcal{I}_{0}, t \in \mathcal{T}_{a}} \rho(\|\boldsymbol{z}_{t}^{i} - \pi((\mathbf{P}_{t}^{c})^{-1}\boldsymbol{p}_{t}^{i})\|_{\boldsymbol{z}}^{2}) \\ + \sum_{t \in \mathcal{T}_{a}} \|\delta\boldsymbol{x}_{t}^{\mathbf{c}} - \mathbf{H}^{-1}\boldsymbol{\beta}\|_{\mathbf{H}}^{2}, \end{aligned} \end{aligned} \\ \begin{aligned} \mathbf{D}_{ynamic} \text{ BA Term + } \\ \text{Smoothness} \end{aligned} \\ \begin{aligned} \mathbf{E}_{d} &\coloneqq \sum_{t, t^{+} \in \mathcal{T}_{t}} \left\| \begin{bmatrix} \boldsymbol{t}_{t^{+}} \\ \boldsymbol{v}_{t}^{i} \end{bmatrix} - \mathbf{A} \begin{bmatrix} \boldsymbol{t}_{t}^{i} \\ \boldsymbol{v}_{t}^{i} \end{bmatrix} \right\|_{\boldsymbol{Q}}^{2} \\ + \sum_{t \in \mathcal{T}_{a}} \rho(\|\boldsymbol{z}_{t}^{i} - \pi(\mathbf{T}_{t}^{\mathbf{cq}^{i}}(\mathbf{P}_{t}^{c})^{-1}\boldsymbol{p}_{t}^{i})\|_{\boldsymbol{z}}^{2}) \end{aligned}$$

Results: Indoor Dataset

ClusterVO: Clustering Moving Instances and Estimating Visual Odometry for Self and Surroundings

Results: KITTI Raw Dataset

ClusterVO: Clustering Moving Instances and Estimating Visual Odometry for Self and Surroundings

Comparisons

Sequence	ORB-SLAM2 [28]			DynSLAM [2]		Li <i>et al</i> . [24]	ClusterSLAM [15]			ClusterVO			
Sequence	ATE	R.RPE	T.RPE	ATE	R.RPE	T.RPE	ATE	ATE	R.RPE	T.RPE	ATE	R.RPE	T.RPE
0926-0009	0.91	0.01	1.89	7.51	0.06	2.17	1.14	0.92	0.03	2.34	0.79	0.03	2.98
0926-0013	0.30	0.01	0.94	1.97	0.04	1.41	0.35	2.12	0.07	5.50	0.26	0.01	1.16
0926-0014	0.56	0.01	1.15	5.98	0.09	2.73	0.51	0.81	0.03	2.24	0.48	0.01	1.04
0926-0051	0.37	0.00	1.10	10.95	0.10	1.65	0.76	1.19	0.03	1.44	0.81	0.02	2.74
0926-0101	3.42	0.03	14.27	10.24	0.13	12.29	5.30	4.02	0.02	12.43	3.18	0.02	12.78
0929-0004	0.44	0.01	1.22	2.59	0.02	2.03	0.40	1.12	0.02	2.78	0.40	0.02	1.77
1003-0047	18.87	0.05	28.32	9.31	0.05	6.58	1.03	10.21	0.06	8.94	4.79	0.05	6.54

	Ego-Motion	on KITTI	l raw D	ataset
--	------------	----------	---------	--------

		$\mathrm{AP}_{\mathrm{bv}}$			Time		
	Easy	Moderate	Hard	Easy	Moderate	Hard	(ms)
Chen et al. [7]	81.34	70.70	66.32	80.62	70.01	65.76	1200
DynSLAM [2]	71.83	47.16	40.30	64.51	43.70	37.66	500
ClusterVO	74.65	49.65	42.65	55.85	38.93	33.55	125

Object Detection on KITTI

Trajectory Accuracy on OMD

Thank You!

